Exam — Introduction to Optimization

Friday, November 8, 2024 University of Groningen

Let $f: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ be a closed convex function with minimizers. Consider the problem:

(1) Find the minimizer of f that has the smallest norm.

The problem is well posed, in the sense that f does have a unique least-norm minimizer. We denote it by \hat{x} . You do not need to prove this. All the questions that follow have the same weight.

Part I. Given $\varepsilon > 0$, define $f_{\varepsilon} : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ by

$$f_{\varepsilon}(x) = f(x) + \frac{\varepsilon}{2} ||x||^2.$$

 \mathcal{K} . Show that f_{ε} is closed and ε -strongly convex, whence it has a unique minimizer, which we denote by x_{ε} .

Verify that $\min(f) + \frac{\varepsilon}{2} ||x_{\varepsilon}||^2 \le f_{\varepsilon}(x_{\varepsilon}) \le f_{\varepsilon}(x)$ for every $x \in \mathbb{R}^N$.

 $x \in \mathbb{R}$ Prove that $||x_{\varepsilon}|| \le ||\hat{x}||$ for every $\varepsilon > 0$ (recall that \hat{x} is the minimizer of f that has the smallest norm).

 \nearrow Verify that $\lim_{\varepsilon \to 0} f(x_{\varepsilon}) = \min(f)$.

We use 3 and 4 to conclude that $x_{\varepsilon} \to \hat{x}$ as $\varepsilon \to 0$.

Part II. Let (ε_k) be a positive real sequence such that $\varepsilon_k \to 0$ as $k \to \infty$. Pick $\gamma > 0$ and $x_0 \in \mathbb{R}^N$, and define a sequence (x_k) by iterating

(2)
$$x_{k+1} = \operatorname{prox}_{\gamma f_{\varepsilon_k}}(x_k) = \operatorname{argmin}\left\{ f_{\varepsilon_k}(x) + \frac{1}{2\gamma} \|x - x_k\|^2 \right\},$$

for $k \geq 0$. The purpose of this part is to show that this procedure converges to the solution of (1).

- (6. Write the optimality condition for (2).)
- 7. Use 1 and 6 to show that

$$f_{\varepsilon_k}(\hat{x}) \geq f_{\varepsilon_k}(x_{k+1}) - \frac{1}{\gamma}(x_{k+1} - x_k) \cdot (\hat{x} - x_{k+1}) + \frac{\varepsilon_k}{2} \|x_{k+1} - \hat{x}\|^2.$$

Now, use 2 and 7 to prove that

$$(1 + \gamma \varepsilon_k) \|x_{k+1} - \hat{x}\|^2 \le \|x_k - \hat{x}\|^2 + \gamma \varepsilon_k [\|\hat{x}\|^2 - \|x_{\varepsilon_k}\|^2].$$

f Use 3, 5 and the Lemma below (which you do not need to prove) to conclude that, if $\sum_{k\geq 0} \varepsilon_k = \infty$, then $x_k \to \hat{x}$ as $k \to \infty$.

Lemma. Let (A_k) , (h_k) and (δ_k) be nonnegative real sequences such that $(1 + \delta_k)A_{k+1} \leq A_k + \delta_k h_k$ for every $k \geq 0$. If $h_k \to 0$ as $k \to \infty$ and $\sum_{k \geq 0} \delta_k = \infty$, then $A_k \to 0$ as $k \to \infty$.